

Chemical looping gasification of biomass with Fe₂O₃/CaO : Oxygen carrier activity and process optimization study

Qiang Hu¹, Ye Shen^{1,2}, Jia Wei Chew³, Tianshu Ge⁴, <u>Chi-Hwa Wang^{1,2*}</u> ¹NUS Environmental Research Institute (NERI), National University of Singapore, Singapore ²Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore ³School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore ⁴Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, China *Corresponding author email: <u>chewch@nus.edu.sg</u>

Solid Waste Management Concepts: Waste-to-Energy

Experimental studies: co-gasification of biomass and solid wastes in a fixed-bed downdraft gasifier.

Sewage sludge as

Z. Ong, Y. Cheng, T. Maneerung, Z.Yao, Y. Dai, Y.W. Tong, C.H. Wang," Co-gasification of woody biomass and sewage sludge in a fixed bed downdraft gasifier", *AIChE Journal* 61 (2015) 2508-2521.

Sewage Sludge

- Sewage sludge is unavoidable product from wastewater treatment plant.

- Amount of sewage sludge will increase due to the economic development and increasing populations.

Sewage sludge has less than 10% of Recycling Rate

- Gasification of sewage sludge is regarded as the potential technology, due to the advantages of converting the sludge into combustible gas products

Woody Biomass and sewage sludge as

ximate, elemental analysis, heating value, and ICP analysis of feedstock mate

10	(v	
E	CE DE	
	A. Call	DY AL

* Sewage sludge was collected from wastewater treatment plant, Singapore

Feedstock	Sewage sludge *	Wood chips						
Proximate analysis (dry basis, weight %)								
Moisture	5.8-9.4	8.2-8.5						
Volatiles	49.8-51.8	67.8-69.2						
Fixed carbon	14.3-15.9	16.2-17.5						
Ash	22.8-29.7	6.2-6.3						
Elemental analysis (ppm)								
Carbon	33.5-36.42	43.3-44.2						
Hydrogen	4.2-5.4	5.4-6.1						
Oxygen	24.1-31.5	41.6-42.5						
Nitrogen	4.9-5.5	0.9-2.1						
Sulfur	1.5-1.9	0.5-1.0						
High heating value (MJ/kg)	14.4-15.0	17.0-18.2						

Element	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Ca
(ppm)									
Sewage Sludge	<0.10	<0.10	<0.10	0.20	2.67	<0.10	<0.10	<0.10	-
Wood chips	-	-	-	<0.10	0.09	<0.10	<0.10	<0.10	3.8

Effect of feed stock composition on gas

Feed stocks		Pure wood chips	10% sludge- mixed wood chips	20% sludge- mixed wood chips ^[a]	33% sludge- mixed wood chips
Gas composition	СО	16.9	15.9	15.6	12.0
(vol. %)	H_{2}	17.3	17.1	16.8	13.4
	CH_4	1.7	2.0	2.1	1.8 20-40 vol.% syngas
	CO_2	11.9	12.2	12.7	12.5
	O_2	2.3	1.7	1.0	3.4
	Total	50.1	48.9	48.2	43.1
Lower heating value (I	MJ/Nm^3)	4.7	4.6	4.5	3.6

^[a] Optimum composition of sewage sludge and wood chips for co-gasification

6

* 70-80 % biomass conversion

Formation of Agglomerated Ash

(co-gasification of woody biomass and sewage sludge)

33 wt. % sewage sludge

- Agglomerated ash was found in bottom ash after adding sewage sludge in feedstock
- Particle size is increased with increasing of sewage sludge content in the feedstock.

10 wt. % sewage sludge mixed with 90 wt. % woody biomass

20 wt. % sewage sludge mixed with 80 wt. % woody biomass

Blockage of gasifier during co-gasification of 33 wt.% sludgemixed wood

Pure Wood Chips

33 wt. % Sludge

Formation of agglomerated ash during cogasification of 33 wt. % sludge leads to the blockage of the reactor at the initial stage of reduction zone

Co-gasification of woody biomass with manure and food waste

Value(MI/kg

Proximate, elemental analysis and heating value of feeds Horse Chicken Feedstock Food waste manure manure Proximate analysis (dried based%) 75.7 **Horse Manure** 73.6 7.8 Moisture (as (as received) received) Volatile 64.8 61.4 75.2 Fixed 10.0 10.5 14.5 Carbon Ash 2.5 25.128.1 **Chicken Manure** Elemental analysis (%) Carbon 37.3 28.2 47.71 Hydrogen 5.1 3.5 7.07 Nitrogen 2.0 4.3 2.27 Sulfur < 0.5 0.8 0.55 High **Food Waste** Heating 12.8 7.3 20.82

Co-gasification of woody biomass with manure and food waste

Effect of feed stock composition on gas composition

70% of woodchips, 30% of horse manure, chicken manure or food wast

1-D kinetic model and 3-D CFD model

0.50

0.45

0.40 0.35

B 0.30

0.25

÷ 0.20

0.15 0.10

0.05 0.00

CH4

1-D kinetic model

Z. Ong, YP Cheng, T. Maneerung, Z. Yao, Y. Dai, Y.W. Tong, C.H. Wang, "Co-gasification of woody biomass and sewage

sludge in a fixed-bed downdraft gasifier", AIChE Journal, 61, 2508-2521 (2015).

3-D CFD model

W.C. Yan, Y. Shen, S. You, S.H. Sim, Z.H. Luo, Y.W. Tong, C.H. Wang, "Model-Based Downdraft Biomass Gasifier Operation and Design for Synthetic Gas Production", J. Cleaner Production, 178, 476-493 (2018).

3-D CFD model

W.C. Yan, Y. Shen, S. You, S.H. Sim, Z.H. Luo, Y.W. Tong, C.H. Wang, "Model-Based Downdraft Biomass Gasifier Operation and Design for Synthetic Gas Production", J. Cleaner Production, 178, 476-493 (2018).

3-D CFD model

CFD simulation and experimental results. CFD simulation Experiment composition (%) Gas CO CO₂ CH, Comparison of temperature profile between CED simulation and experimental results. El CFD simulation 1200 Experiment (APL) Experiment (SJTU) (¥) ature. 800 600 400 200

T tred

T bred T_bred: Temperature at bottom of reduction bell T_tred: Temperature at top of reduction bell

Comparison of both experimental and simulation data with others

References: [38] Pinto F.et al., Energy Fuel 22, pp. 2314-2325, 2008; [39] Gai C. et al., Int. J. Hydrogen Energy 37, pp. 4935-4944, 2012.; [40]Kim Y.D. et al., Appl. Energy 112, pp. 414-420, 2013.

Z. Ong, YP Cheng, T. Maneerung, Z. Yao, Y. Dai, Y.W. Tong, C.H. Wang, "Co-gasification of woody" biomass and sewage 15 sludge in a fixed-bed downdraft gasifier", AIChE Journal, 61, 2508-2521 (2015).

Comparison of gas composition between

Re-utilization of solid residues from gasification and incineration

Metal payides Hydroxides Hydroxides Race pinou Organic cor

ottom ash is classified as us waste, bottom ash rious harmful compounds leached out into water

or destand alkali salts e amounts of heavy metals nic compounds

Bottom ash is one of the harmful inorganic residues arising from gasification process. In view of economic and environmental implications, the proper disposal and utilization of bottom ash with emphasis on finding new applications is necessary.

Bottom ash as a source of catalytic materials

CaO catalyst was successfully developed from gasification bottom ash and has high activity towards transesterification for biodiesel production.

 Char/ash for agricultural Charpplicationsich substance, which can be further mixed with soil and used as a Biochar

Char as a source of activated carbon

Activated carbon was successfully developed from char and was effectively used for dye removal.

Chemical looping process

hemical looping combustion

- Conversion waste to energy
 Promote hydrogen production
- Energy saving by OC circulation → Less tar generation \succ

Energy & Environmental Science, 2017, 10(9): 1885-1910. Progress in Energy and Combustion Science, 2018(65):6-66. Chemical looping gasificat

VS

Materials and methods

Sample	Properties								
Rice straw	Proximate analysis, dry, wt. %								
	Ash	Volatile	Volatile Fixed carbon						
	10.86	76.84		12.30					
	Ultimate analysis, dry, wt. %								
	С	H N S O (by difference)							
	43.08	6.63	0.65	0.21	38.56				
	Ash composition ^a , wt. %								
	Si	К	Cl	Mg	Na	0			
	44.91	25.72	11.32	0.85	0.41	16.79			

General H_2 concentration: Air gasification: 10-20% CO₂ gasification: 15-25% H₂O gasification: 35-45%

CLG of rice straw with different OCs: 800 °C, 0.1 g/min steam feeding, 30 m

Effect of OC and steam on syngas properties (*Fe:Ca=1:1*)

- *H*₂ yield and heating value of syngas was enhanced by both steam and OC.
- The introduction of OC promoted the carbon
 $Ca_2Fe_2O_5 + 3CO → 2CaO + 2Fe + 3CO_2$ conversion due to the possible catalytic effect of Ca/Fe. 2CaO + 2Fe + 3H₂O → Ca₂Fe₂O₅ + 3H₂

XRD patterns for solid residues after gasification

One step redox of $Ca_2Fe_2O_5$: $Ca_2Fe_2O_5 + 3H_2 \rightarrow 2CaO + 2Fe + 3H_2O$ $Ca_2Fe_2O_5 + 3CO \rightarrow 2CaO + 2Fe + 3CO_2$ $2CaO + 2Fe + 3H_2O \rightarrow Ca_2Fe_2O_5 + 3H_2$ 20

Results 1 - Effect of oxygen carrier

Gas yields under chemical looping gasification with different OCs

	Fe ₂ O ₃	CaO	Fe:Ca=1: 2	Fe:Ca=1:1	Fe:Ca=2:1
H2 yield (mmol/g biomass)	20.84	19.94	21.79	23.07	20.42
Carbon yield in syngas (%)	35.70	47.18	42.34	40.95	38.07
Mass balance (%)	93.20	94.55	98.83	96.97	100.13
Syngas heating value (kJ/g biomass)	7.71	8.23	8.22	8.46	7.52
Gas content (%)					
H ₂	61.96	54.45	59.29	63.20	60.31
CO ₂	23.81	27.32	26.65	23.21	26.85
CH₄	2.00	2.91	2.39	2.11	2.20
со	12.24	15.32	11.67	11.48	10.64

Carbon yield in syngas was promoted with more Ca due to the catalytic volatile cracking.

→ The ratio of 1:1 for Fe:Ca ($Ca_2Fe_2O_5$) is the optimal for hydrogen production and CLG.

	Fres	h OC	OC after CLG reaction		
	Fresh OC	OC after CLG reaction	Fresh OC	OC after CLG reaction	
	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	
	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	
	$CaFe_2O_4$	$CaFe_3O_5 + Fe_3O_4$	$CaFe_2O_4$	$CaFe_3O_5 + Fe_3O_4$	
	Fresh OC	OC after CLG reaction	Fresh OC	OC after CLG reaction	
V	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	
	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	
	$CaFe_2O_4$	$CaFe_3O_5 + Fe_3O_4$	$CaFe_2O_4$	$CaFe_3O_5 + Fe_3O_4$	
	Fresh OC	OC after CLG reaction	Fresh OC	OC after CLG reaction	
	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	$Ca_2Fe_2O_5 + CaO$	

A simple one step reduction and oxidation for $Ca_2Fe_2O_5$ would largely promote H_2 production through the re-oxidation started from Fe^0 by steam, compared with that from FeO and Fe_3O_4

Gas yields of chemical looping gasification with Fe:Ca=1:1 under different temperatures

	600 °C	700 °C	800 °C	900 °C
H2 yield (mmol/g biomass)	3.74	8.60	23.07	34.23
Gas yield (%)	20.82	31.88	58.37	83.09
Mass balance (%)	100.76	97.78	96.97	96.92
Syngas heating value (kJ/g biomass)	1.98	3.46	8.46	13.86
Gas content (%)				
H ₂	40.66	51.20	63.20	64.10
CO ₂	36.85	33.26	23.21	19.70
CH₄	5.83	3.62	2.11	1.74
со	16.67	11.91	11.48	14.46

Hydrogen yield, syngas properties were increased with the increase of gasification temperature.

Less than 700 °C :

$$Ca_2Fe_2O_5 \xrightarrow{CLG} Ca_2Fe_2O_5 + Fe_3O_4$$

Higher than 800 °C :

$$Ca_2Fe_2O_5 \xrightarrow{CLG} Ca_2Fe_2O_5$$

XRD patterns for solid residues after CLG at different temperatures (Ca:Fe=1:1)

 \geq A temperature of higher than 800 °C was needed for steam chemical looping gasification.

Results 3 - Cycling performance

Gas yields of chemical looping gasification with Fe:Ca=1:1 under different temperatures

	1st cycle	2nd cycle	3rd cycle	4th cycle	5th cycle
H2 yield (mmol/g biomass)	23.07	20.94	21.14	20.60	18.09
Carbon yield in syngas (%)	40.95	43.02	45.71	45.93	44.32
Gas yield (%)	58.37	58.06	59.79	60.44	56.06
Carbon deposited (%)	12.33	10.47	10.70	8.37	8.60
Gas content (%)					
H ₂	63.20	58.91	58.28	57.53	56.18
CO ₂	23.21	25.36	25.41	26.56	28.26
CH₄	2.11	3.40	3.59	3.46	4.18
со	11.48	12.33	12.72	12.46	11.37

- Hydrogen yield was slightly decreased with the increased cycle times.
- \blacktriangleright The carbon deposited was decreased along with the enhanced CO₂ content and carbon conversion to gas phase.

Results 3 - Cycling performance

SEM images for Fe:Ca=1:1 (Ca₂Fe₂O₅) after several redox

- The redox cycle of Ca₂Fe₂O₅ favours hydrogen production due to an one-step transition (Fe³⁺ → Fe → Fe³⁺).
- The combination of CaO with SiO₂ derived from ash of rice straw at high temperature was the reason for reduced hydrogen yield over cycling CLG.
 27

Conclusions

Schematic of the chemical looping gasification process with Ca₂Fe₂O₅ as oxygen carrier

- The optimized hydrogen yield was 23.07 mmol/g biomass with Fe:Ca=1:1 under the conditions of 800 °C, 0.1 g/min steam.
- A temperature of higher than 800 °C was needed to have a completed redox of oxygen carrier.
- ➤ The redox cycle of Ca₂Fe₂O₅ favours hydrogen production due to an one-step transition (Fe³⁺ → Fe → Fe³⁺).
- SiO₂ in the ash of biomass may react with Ca in high temperature, and further reduced the cycling performance of Ca₂Fe₂O₅.

Acknowledgements

 Singapore National Research Foundation (Campus for Research Excellence And Technological Enterprise (CREATE) Program;

Correspondence:

Prof. Chi-Hwa Wang Email: chewch@nus.edu.sg Website: http://cheed.nus.edu.sg/~chewch/index.htm

Thank you!

